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MOTIVATION
Bayesian inference for Factorial Hidden
Markov Models models is challenging due to
the exponentially sized latent variable space.
Standard Monte Carlo samplers can have
difficulties effectively exploring the posterior
landscape and are often restricted to explo-
ration around localised regions that depend on
initialisation.

BACKGROUND
Factorial HMM is an extended version of the
standard HMM with multiple latent chains.

Ensemble MCMC methods such as parallel tem-
pering can alleviate this problem. Suppose our
goal is to sample from a target density π. In-
stead of sampling x ∼ π(·), ensemble MCMC in-
troduces an extended product space (x1, . . . ,xK)
with a new target density π∗ defined as follows

π∗(x1, . . . ,xK) =

K∏
k=1

πk(xk),

Specifically, parallel tempering introduces a
temperature ladder 1.0 = T1 < . . . < TK and
associates a temperature with each chain. Denot-
ing the inverse temperature βk := 1/Tk,

π∗(x1, . . . ,xK) =
K∏
k=1

π(xk)
βk

Tempered targets are less peaked. Therefore
higher temperature chains explore the space well
and do not get stuck.

Target, π(x) Tempered target, π(x)β

Here the key question is how to exchange infor-
mation between the chains in the ensemble.

Existing approaches for information exchange:

Swap proposal:

Proposal schemes via genetic algorithms. For ex-
ample, a one-point crossover proposal:

These are proposal mechanisms, i.e. an additional
accept/reject step is needed.

AUGMENTED ENSEMBLE MCMC
We propose an augmented Gibbs sampler to ex-
change information between a pair of chains
πi(xi) and πj(xj).

Let CR(xi,xj) denote the set of all crossovers be-
tween the vectors xi and xj . We introduce two
auxiliary variables u and v, that live in the same
space as xi and xj , drawn from an auxiliary dis-
tribution p(u,v|xi,xj), which we define to be
uniform on the set CR(xi,xj).

Using the auxiliary variables we can exchange in-
formation between xi and xj through the inter-
mediate step of sampling the auxiliary variables
(u,v), based on the following two-step Gibbs
procedure:

1. Generate (u,v) ∼ p(u,v|xi,xj)
2. Generate (xi,xj) ∼ p(xi,xj |rest), where

p(xi,xj |rest) =
1

Z
πi(xi)πj(xj)p(u,v|xi,xj)

=
1

Z
πi(xi)πj(xj)p(xi,xj |u,v)

=
1

Z
πi(xi)πj(xj)I((xi,xj) ∈ CR(u,v))

where the normalising constant Z = Z(u,v) is
computed explicitly by summing over CR(u,v).
Schematically:

TOY EXAMPLE

We consider the following multimodal toy sam-
pling problem, where the target distribution is bi-
nary and has multiple separated modes.

We compare our augmentation scheme (aug-
mented crossover) with a single-chain sampler and
two additional exchange moves for ensemble

samplers: swap move, and a uniformly proposed
crossover (random cr).

Heatmap for the traces of x for this toy example:

TUMOR DECONVOLUTION

Factorial HMM is naturally suited for the cancer
genomics application below, where our goal is to
infer subpopulations among tumor cells.
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We note that a poorly mixing sampler which is
exploring only one of the possible latent expla-
nations could lead to misleading conclusions re-
garding the subclonal architecture of a tumor.

Model

Emission likelihood for the factorial HMM:

yt|xt,w, h ∼ N

(
h

K∑
k=1

wkxk,t, σ
2

)

Simulation study

First, we investigated the performance of sam-
pling schemes for FHMMs in the presence of mul-
timodality in a controlled setting. We generated
data from the model with K = 3 and weights
such that w1 + w2 ≈ w3. As a result, all of the
following configurations of X are plausible:

For inference in FHMMs, we considered two
single-chain samplers

• One-row updates of X while keeping the
rest fixed (“Gibbs”)

• Hamming Ball sampling of X (“HB”)
(Titsias and Yau, 2014; 2017)

and ensemble versions of both of these (swap, ran-
dom cr, and augmented cr exchange moves).

Real tumor data analysis

Next we illustrate the utility of our sampling ap-
proach on the whole-genome tumor sequencing
data for bladder cancers.


